Intheir Viewpoint on Interpreting Diagnostic Tests for SARS-CoV-2 Sethuraman and colleagues may have left out a major player of the humoral immune response against respiratory viruses, and that is IgA. By now there are a number of publications which demonstrate a clear-cut IgA anti-SARS-CoV-2 response (1-3). Terapidiawali dengan prosedur plasmapheresis, yakni pemisahan sebagian plasma dari darah. Plasma darah pasien kemudian diganti dengan plasma darah donor. Ini karena pada plasma donor terdapat antibodi yang bereaksi terhadap SARS-CoV-2. Pada terapi plasma, hasil pemeriksaan serologi antibodi kuantitatif akan menonjolkan fokus dan daya antibodi. TheVITROS Anti-SARS-CoV-2 IgG Calibrator contains 0.5% ProClin 950. H317: May cause an allergic skin reaction. Wear protective gloves. P302 +P352: IF ONSKIN: Wash with plenty ofsoap and water. P333 + Coronavirus2 (SARS-CoV-2). SARS-CoV-2 meru-pakan virus baru yang ditemukan pada akhir tahun 2019. COVID-19 merupakan jenis penyakit baru yang sebelumnya belum pernah ada. Virus (SARS-CoV-2) menyerang sistem pernapasan. Virus ini dapat menyebabkan pneumonia akut bahkan dapat menimbulkan kematian (Sari et al., 2020). Severeacute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is a novel coronavirus discovered in China in December 2019 that has led to an unprecedented global pandemic. It causes coronavirus disease 19 (COVID‑19), a respiratory illness with symptoms ranging from mild to severe with possible progression to pneumonia, multiorgan failure and even to death. Bolehsaja jika kamu merasa perlu melakukan cek antibodi IgG SRBD/ SARS COV-2 Quantitative Test setelah mendapat vaksin. Cek antibodi bisa dilakukan untuk memantau dan mengetahui kadar antibodi yang dimiliki tubuh. Biar lebih mudah, pakai aplikasi Halodoc untuk mencari tahu rumah sakit atau fasilitas kesehatan yang menunjang pemeriksaan ini. Background The coronavirus disease 2019 (COVID-19) is a respiratory illness that emerged in December 2019 in China and has since become a global health threat [Reference Wang 1].The disease is caused by an infection with the severe acute respiratory syndrome coronavirus (SARS-CoV-2) [Reference Hu 2] and is known to spread in clusters; therefore, it is KondisiPenyerta / Komorbid / Penyakit Bawaan. Klik dibawah ini untuk memilih semua Kondisi Penyerta / Komorbid / Penyakit Bawaan *. Ya Tidak. Hamil *. Ya Tidak. Diabetes *. Ya Tidak. Penyakit Jantung *. Ya Tidak. o1Z39mU. The development timeline of COVID-19 vaccines is unprecedented, with more than 300 vaccine developers active worldwide. Vaccine candidates developed with various technology platforms targeting different epitopes of SARS-CoV-2 are in the pipeline. Vaccine developers are using a range of immunoassays with different readouts to measure immune responses after vaccination, making comparisons of the immunogenicity of different COVID-19 vaccine candidates April, 2020, in a joint effort, the Coalition for Epidemic Preparedness Innovations CEPI, the National Institute for Biological Standards and Control NIBSC, and WHO provided vaccine developers and the entire scientific community with a research reagent for an anti-SARS-CoV-2 antibody. The availability of this material was crucial for facilitating the development of diagnostics, vaccines, and therapeutic preparations. This effort was an initial response when NIBSC, in its capacity as a WHO collaborating centre, was working on the preparation of the WHO International Standards. This work included a collaborative study that was launched in July, 2020, to test serum samples and plasma samples sourced from convalescent patients with the aim of selecting the most suitable candidate material for the WHO International Standards for anti-SARS-CoV-2 immunoglobulin. The study involved 44 laboratories from 15 countries and the use of live and pseudotype-based neutralisation assays, ELISA, rapid tests, and other methods. The outcomes of the study were submitted to WHO in November, 2020. The inter-laboratory variation was reduced more than 50 times for neutralisation and 2000 times for ELISA when assay values were reported relative to the International International Standard and International Reference Panel for anti-SARS-CoV-2 immunoglobulins were adopted by the WHO Expert Committee on Biological Standardization on Dec 10, WHO International Standard for anti-SARS-CoV-2 Scholar The International Standard allows the accurate calibration of assays to an arbitrary unit, thereby reducing inter-laboratory variation and creating a common language for reporting data. The International Standard is based on pooled human plasma from convalescent patients, which is lyophilised in ampoules, with an assigned unit of 250 international units IU per ampoule for neutralising activity. For binding assays, a unit of 1000 binding antibody units BAU per mL can be used to assist the comparison of assays detecting the same class of immunoglobulins with the same specificity eg, anti-receptor-binding domain IgG, anti-N IgM, etc The International Standard is available in the NIBSC have been launched for the harmonisation of immune response assessment across COVID-19 vaccine candidates, including the CEPI Global Centralised Laboratory for Epidemic Preparedness InnovationsCEPI establishes global network of laboratories to centralise assessment of COVID-19 vaccine Scholar CEPI centralised laboratories will achieve harmonisation of the results from different vaccine clinical trials with the use of common standard operating procedures and the same crucial reagents, including a working standard calibrated to the international basic tool for any harmonisation is the global use of an International Standard and IU to which assay data need to be calibrated with the use of a reliable method. It is therefore crucial that the International Standard is properly used by all vaccine developers, national reference laboratories, and academic groups worldwide, and that immunogenicity results are reported as an international standard unit IU/mL for neutralising antibodies and BAU/mL for binding assay formats.In this manner, the results from clinical trials expressed in IU would allow for the comparison of the immune responses after natural infection and induced by various vaccine candidates. This comparison is particularly important for the identification of correlates of protection against COVID-19; should neutralising antibodies be further supported as a component of the protective response, the expression of antibody responses in IU/mL is essential to gather a consensus from several clinical trials and other studies on the titre required for the correlate of protection against SARS-2-CoV has not yet been unequivocally defined, antibodies are likely to be at least part of the protective response. The effect of new variants on the evaluation of antibodies is obvious and unequivocal comparisons are required. Reporting the immunological responses from vaccine clinical trials against the International Standard is essential for the evaluation of clinical data submitted to national regulatory authorities as well as to WHO for emergency use listing, especially as placebo-controlled efficacy studies become operationally unfeasible. There will be a substantial effect on the use of the International Standard if regulatory authorities worldwide request data in IU/mL or BAU/mL. We also encourage journal editors and peer reviewers to ensure that the international standard is used as the benchmark in publications and that data from serology assays are reported in International Standard declare no competing TT Cramer JP Chen R Mayhew S Evolution of the COVID-19 vaccine development Rev Drug Discov. 2020; 19 WHO International Standard for anti-SARS-CoV-2 for Epidemic Preparedness InnovationsCEPI establishes global network of laboratories to centralise assessment of COVID-19 vaccine infoPublication historyPublished March 23, 2021IdentificationDOI Copyright © 2021 Published by Elsevier Ltd. All rights this article on ScienceDirectView Large ImageDownload Hi-res image Download .PPT Dear Editor,The Coronavirus disease 2019 COVID-19 pandemic has caused over 670 million cases and million deaths worldwide, many of which are attributed to cardiovascular complications. Virus-induced endothelial damage, endothelial barrier dysfunction, thrombosis, and cytokine storm are implicated in heart and multi-organ failure. The prognosis is worsened by comorbidities, including diabetes and arterial hypertension, characterized by an inflammatory and pro-thrombotic milieu and upregulation of total and glycosylated Angiotensin-Converting Enzyme 2 ACE2 in pericytes represent a preferential target of SARS-CoV-2 These perivascular cells preserve vascular integrity through physical and paracrine crosstalk with capillary endothelial cells. Pericyte dysfunction and detachment favor the SARS-CoV-2 to spread from the bloodstream and damage the infection starts with the engagement of the Spike S-protein with its cellular ACE-2 and CD147 receptors. Due to the homology with human proteins, the S-protein also acts as a natural ligand activating the ERK1/2 MAPK signaling pathway in cardiac Some evidence suggests that the S-protein, CD147, cyclophilin, and MAPK axis are essential in triggering the cytokine However, an in vivo demonstration of the S-protein’s direct damaging effect on cardiac pericytes is present study investigated the acute effects of intravenously injected S-protein on the heart microvasculature of otherwise healthy mice. Moreover, we analyzed the expressional changes caused by the S-protein in primary cultures of human cardiac pericytes using bulk RNA-Sequencing. Finally, the RNA-Sequencing data were cross-referenced with single-nuclei sn-RNA-Sequencing datasets of COVID-19 patients’ hearts to determine how expressional changes after SARS-CoV-2 infection overlap with those caused by the S-protein healthy CD1 mice 6 male, 6 female were randomized to receive either 10 µg endotoxin-free S-protein resuspended in 100 µL sterile PBS or PBS only, intravenously. They were culled three days later for molecular and histological analyses Fig. 1a. S-protein immunoreactive levels in the circulation were like those reported in COVID-19 patients early after infection and before seroconversion ± ng/mL.7 Immunohistochemistry of the hearts demonstrated that the S-protein, although not altering the capillary density, increased the fraction that expresses ICAM-1, an adhesion molecule implicated in leucocyte-endothelial interactions Fig. 1b and remarkably reduced the pericyte density, coverage, and viability Fig. 1c–e. SARS-CoV-2 can trigger direct or indirect activation of all three complement Here, we show that the in vivo administration of S-protein increased complement-activated C5a protein levels in peripheral blood and the heart Fig. 1f, g. Moreover, the S-protein increased the heart’s abundance of CD45+ immune cells ± cells/mm2 vs. ± cell/mm2 in PBS-treated mice, specifically Ly6G/6C+ neutrophils/monocytes Fig. 1h and F4/80+ macrophages Fig. 1i. Leucocytes can crawl along pericyte processes to enlarged gaps between adjacent pericytes in an ICAM-1-dependent manner during inflammation. Controls for immunohistochemistry stainings are provided in Supplementary Fig. 1a–i Injection of S-protein in vivo in mice. a Experimental design of the in vivo study in mice. b Representative immunofluorescence images of mice hearts showing capillaries IB4, green and activated endothelium ICAM-1, red. Bar graphs summarize the quantitative analysis of capillaries positive for ICAM-1, expressed as a percentage of total vessels. c Representative immunofluorescence images showing capillaries IB4, green and pericytes PDGFRβ, red. Bar graphs summarize the quantitative analysis of pericyte density. d Representative immunofluorescence images showing longitudinal capillaries IB4, green covered by pericytes PDGFRβ, red. Bar graphs report the quantitative analysis of pericyte coverage. e Representative immunofluorescence images of mice hearts showing endothelial cells IB4, green, pericytes PDGFRβ, red, and TUNEL-positive nuclei apoptotic nuclei, magenta. Bar graphs report the quantification of TUNEL+ pericytes. f Measurement of C5a in mice plasma using ELISA. g Immunohistochemistry/DAB staining and a bar graph showing the accumulation of the activated complement factor C5a in the mice hearts. Nuclei are shown in blue Haematoxylin. The graph reports the integrated optical density IOD values. Representative immunofluorescence images of mice hearts showing the presence of neutrophils/monocytes h—Ly6G/6 C, green and macrophages i—F4/80, green. Cardiomyocytes are labeled with α-Sarcomeric Actin red. Bar graphs report the density of Ly6G/6 C+ neutrophils/monocytes and F4/80+ macrophages. In all immunofluorescence images, DAPI labels nuclei in blue. For all images, the scale bar is 50 μm. For all analyses, n = 6 per group. All data are presented as individual values and means ± SEM. Statistical tests after a normality test, an unpaired t-Test was applied. j–l RNA-Sequencing analysis of human cardiac pericytes challenged with the S-protein in vitro. n = 3 patients. j Experimental design and volcano plot showing transcripts differentially expressed in S-protein-treated nM human cardiac pericytes vs. PBS vehicle-treated pericytes. The terms of the most relevant genes were reported. k Bar graph indicating all differentially expressed KEGG pathways. l Bar graphs indicating the most relevant differentially expressed Reactome pathways. FDR = false discovery rate. Genes were considered differentially expressed for FDR ≤ m–p Sn-RNA-Sequencing analysis of pericytes from COVID-19 patients’ hearts. n = 22 COVID patients, n = 25 controls. m Plots show the ordering of pericytes in pseudo-time. The starting point of pseudo-time is from the pericytes of healthy donors. n A heatmap summarizing the mean expression of normalized unique molecular identifiers UMIs of genes in the modules resulting from the pseudo-time analysis. o A volcano plot showing fold-change of module expression COVID-19 compared to healthy donors and enrichment significance of each module and differentially expressed genes from bulk RNA-Sequencing comparing PBS-vehicle and Spike. p A plot summarising overlapped/similar Reactome and Gene Ontology terms overrepresented in each module and differentially expressed genes in bulk RNA-Sequencing. q Schematic summarizing major findings and candidate mechanisms underpinning the S-protein damaging action. Left panel We provide novel evidence that S-protein alone can damage the heart microvasculature of otherwise healthy mice. On one side, the S-protein acts as a ligand activating intracellular pericyte signaling, which results in pericyte detachment, death, and decreased vascular coverage, thus disrupting the coronary microcirculation. On the other, the S-protein triggers endothelial activation ICAM-1+ endothelial cells, resulting in increased homing of leukocytes to the heart and accumulation of activated complement protein C5a. Right panel A comparison between the expressional changes induced by the S-protein in primary human cardiac pericytes in vitro and single-nuclei sn-RNA-Sequencing pseudo-time trajectories analysis in pericytes extracted from the heart of deceased COVID-19 patients revealed overlapping expressional responses as indicated. These findings suggest that at least some of the in vivo effects of SARS-CoV-2 on human cardiac pericytes may be due to the modulation of inflammatory and epigenetic pathways triggered by the S-protein interaction with its cell surface receptors. The drawing was created with size imageTo further validate the theory of the S-protein acting as a direct transcriptomic influencer, we added it or the PBS vehicle to human primary cardiac pericytes in vitro for 48 h. RNA-Sequencing analysis indicated the differential modulation of 309 RNA transcripts, with 201 genes being up-regulated and 108 genes down-regulated by the S-protein at FDR < Fig. 1j. KEGG pathway analysis showed an overrepresentation of inflammatory pathways, for example, TNF, IL-17, and NF-kappa B signaling pathways, cytokine-cytokine receptor interaction, and cell adhesion molecules CAMs. Moreover, there was an enrichment for pathways associated with infectious diseases, including Legionellosis, Pertussis, Malaria, Herpes virus, and Epstein-Barr virus infection Fig. 1k. An overview of the pathway analysis based on the Reactome database further pinpointed the transcriptional induction of cytokine signaling pathways, such as IL-10, IL-4, and IL-13 signaling and Toll-like receptor cascade Fig. 1l and Supplementary Fig. S2, and the downregulation of pathways implicated in histone deacetylation and methylation and chromatin modification, and RNA polymerase-related mechanisms controlling promoter opening and clearance, transcription, and chain elongation Fig. 1l and Supplementary Fig. S2. The analysis of modulated biological processes confirmed the upregulation of cellular responses to stress and the downregulation of homeostatic responses associated with healing and angiogenesis processes Supplementary Fig. S3. A comprehensive list of regulated pathways is provided in Supplementary Dataset to dissect clinically relevant targets further, we cross-interrogated the transcriptional landscape of pericytes exposed in vitro to the recombinant S-protein and pericytes from the hearts of COVID-19 patients. Additionally, we employed a pseudo-time inference approach to probe individual genes’ expression dynamics along with the progression of the disease. To this aim, we extracted pericytes from the integrated Seurat, R object downloaded from Delorey et al., 20219 using marker genes followed by a pseudo-time analysis of pericytes collected from the heart of COVID-19 patients Fig. 1m. The pseudo-time analysis allowed the identification of pericyte genes that are differential and co-expressed along the trajectory. This resulted in the recognition of 37 gene clusters Fig. 1n. Next, to identify common signals between ex vivo and in vivo datasets, we tested for the overrepresentation of expressional changes in pericytes exposed to S-protein and gene clusters in the human heart. We observed that seven gene clusters 1, 2, 6, 13, 15, 20, and 27, FDR < significantly overlapped with the expressional changes observed in pericytes exposed to the S-protein experiment Fig. 1o. Cluster 15 was enriched for cytokine-related pathways, metallothioneins, and regulation of histone acetylation, while clusters 1, 6 and 27 were overrepresented for extracellular matrix organization, elastic fibre formation, and integrin cell surface interactions Fig. 1p and Supplementary Dataset 2. Studies have reported that COVID-19 can cause cardiovascular complications due to impaired extracellular matrix organisation and reduced elastic fibre levels, potentially leading to blood These findings suggest a convergence of signals that proteins of the virion envelope mediate at least part of the transcriptional changes induced by the virus in the hearts of infected people. Therefore, some of the in vivo effects of SARS-CoV-2 on human cardiac pericytes may be attributable to the interaction between the S-protein and the host’s transcriptomic program modulating inflammatory and epigenetic we performed drug target enrichment analysis using the LINCS L1000CDS and DrugBank databases. This analysis allowed us to identify drugs that reverse the expressional changes induced by the S-protein in pericytes Supplementary Dataset 3 and 4. Among the top fifty compounds, we found a prevalence of anti-tumoral, pro-apoptotic, anti-viral, anti-inflammatory and anti-thrombotic drugs, some of which have already been trialed in COVID-19 patients. Although more research is needed to determine if pharmacological interference with the signaling emanating from the S-protein can alleviate COVID-19 outcomes, these data suggest a competitive effect of anti-inflammatory and anti-tumoral drugs. In addition, several compounds like Quercetin or ubiquitin-conjugating enzyme inhibitors may help moderate inflammation by eliminating S-Protein-induced senescent summarized in Fig. 1q provide novel evidence of the SARS-CoV-2 S-protein’s direct pathogenic action on cardiac pericytes and the heart’s microvasculature. It is plausible that the harmful effects observed in healthy mice three days after a single systemic injection of the S-protein might be intensified in the presence of cardiovascular risk factors and prolonged exposure. These possibilities merit further investigation. Moreover, we showed that the S-protein modifies the transcriptional program of human cells to the virus’ advantage. This new information could have significant implications for the treatment of COVID-19, for instance, using anti-S-protein engineering approaches to protect vascular cells. Data availabilityThe article’s data can be obtained as reasonably required from the corresponding author. The main datasets underlying transcriptomic analyses are provided as supplementary datasets Dataset 1–4. The bulk RNA-Seq raw data have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number N. et al. Glycated ACE2 receptor in diabetes open door for SARS-COV-2 entry in cardiomyocyte. Cardiovasc. Diabetol. 20, 99 2021.Article PubMed PubMed Central Google Scholar Sardu, C. et al. Could Anti-Hypertensive Drug Therapy Affect the Clinical Prognosis of Hypertensive Patients With COVID-19 Infection? Data From Centers of Southern Italy. J. Am. Heart Assoc. 9, e016948 2020.Article PubMed PubMed Central Google Scholar Tucker, N. R. et al. Myocyte-Specific Upregulation of ACE2 in Cardiovascular Disease Implications for SARS-CoV-2-Mediated Myocarditis. Circulation 142, 708–710 2020.CAS PubMed PubMed Central Google Scholar Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat. Med. 27, 546–559 2021.Article CAS PubMed PubMed Central Google Scholar Daems, M. et al. SARS-CoV-2 infection causes prolonged cardiomyocyte swelling and inhibition of HIF1alpha translocation in an animal model COVID-19. Front. Cardiovasc. Med. 9, 964512 2022.Article CAS PubMed PubMed Central Google Scholar Khan, A. O. et al. Preferential uptake of SARS-CoV-2 by pericytes potentiates vascular damage and permeability in an organoid model of the microvasculature. Cardiovasc. Res. 118, 3085–3096 2022.Article CAS PubMed PubMed Central Google Scholar Avolio, E. et al. The SARS-CoV-2 Spike protein disrupts human cardiac pericytes function through CD147 receptor-mediated signalling a potential non-infective mechanism of COVID-19 microvascular disease. Clin. Sci. 135, 2667–2689 2021.Article CAS Google Scholar Afzali, B., Noris, M., Lambrecht, B. N. & Kemper, C. The state of complement in COVID-19. Nat. Rev. Immunol. 22, 77–84 2022.Article CAS PubMed Google Scholar Delorey, T. M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 595, 107–113 2021.Article CAS PubMed PubMed Central Google Scholar Shi, S. et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 5, 802–810 2020.Article PubMed PubMed Central Google Scholar Download referencesAcknowledgementsThe authors wish to acknowledge the members of the University of Bristol COVID-19 Emergency Research Group UNCOVER for their scientific support. Drawings were generated with work was supported by the British Heart Foundation BHF project grant “Targeting the SARS-CoV-2 S-protein binding to the ACE2 receptor to preserve human cardiac pericytes function in COVID-19” PG/20/10285 to and European Commission H2020 CORDIS project COVIRNA project/id/101016072 to and and BHF Chair award CH/15/1/31199 to In addition, it was supported by a grant from the National Institute for Health Research NIHR Biomedical Research Centre at University Hospitals Bristol NHS Foundation Trust and the University of Bristol. is a postdoctoral researcher supported by the Heart Research UK translational project grant “Targeting pericytes for halting pulmonary hypertension in infants with congenital heart disease” RG2697/21/23 to and is an investigator of the Wellcome Trust 106115/Z/14/Z.Author informationAuthor notesThese authors contributed equally Elisa Avolio, Prashant K SrivastavaAuthors and AffiliationsBristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UKElisa Avolio, Michele Carrabba, Christopher T. W. Tsang, Yue Gu, Anita C. Thomas & Paolo MadedduNational Heart & Lung Institute, Imperial College, London, UKPrashant K. Srivastava, Jiahui Ji & Costanza EmanueliSchool of Biochemistry, University of Bristol, Bristol, UKKapil Gupta & Imre BergerAuthorsElisa AvolioYou can also search for this author in PubMed Google ScholarPrashant K. SrivastavaYou can also search for this author in PubMed Google ScholarJiahui JiYou can also search for this author in PubMed Google ScholarMichele CarrabbaYou can also search for this author in PubMed Google ScholarChristopher T. W. TsangYou can also search for this author in PubMed Google ScholarYue GuYou can also search for this author in PubMed Google ScholarAnita C. ThomasYou can also search for this author in PubMed Google ScholarKapil GuptaYou can also search for this author in PubMed Google ScholarImre BergerYou can also search for this author in PubMed Google ScholarCostanza EmanueliYou can also search for this author in PubMed Google ScholarPaolo MadedduYou can also search for this author in PubMed Google research conception and design. manuscript writing. histological analyses of mice hearts. cellular and molecular biology experiments. transcriptomic analyses in pericytes. in vivo procedures with mice. production and provision of Spike protein. funding, supervision of transcriptomic studies, and manuscript editing. funding provision. study supervision. All authors data interpretation and manuscript revision. All authors approved the authorship and the final version of the manuscript for authorCorrespondence to Paolo declarations Competing interests The authors declare no competing interests. Ethics declarations The animal study was covered by a license from the British Home Office PPL 1377882 and complied with EU Directive 2010/63/EU. Procedures were carried out according to the principles in the Guide for the Care and Use of Laboratory Animals The Institute of Laboratory Animal Resources, 1996. Termination was conducted according to humane methods outlined in the Guidance on the Operation of the Animals Scientific Procedures Act 1986 Home Office 2014. The collection of human patients’ cardiac waste tissue was covered by the ethical approval number 15/LO/1064 from the North Somerset and South Bristol Research Ethics Committee. Patients gave informed written consent. Supplementary informationRights and permissions Open Access This article is licensed under a Creative Commons Attribution International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original authors and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit Reprints and PermissionsAbout this articleCite this articleAvolio, E., Srivastava, Ji, J. et al. Murine studies and expressional analyses of human cardiac pericytes reveal novel trajectories of SARS-CoV-2 Spike protein-induced microvascular damage. Sig Transduct Target Ther 8, 232 2023. citationReceived 11 January 2023Revised 28 April 2023Accepted 08 May 2023Published 02 June 2023DOI . 2021 Dec;93126813-6817. doi Epub 2021 Aug 5. Affiliations PMID 34314037 PMCID PMC8427121 DOI Free PMC article The dynamics of quantitative SARS-CoV-2 antispike IgG response to BNT162b2 vaccination Shun Kaneko et al. J Med Virol. 2021 Dec. Free PMC article Abstract Vaccination for SARS-CoV-2 is necessary to overcome coronavirus disease 2019 COVID-19. However, the time-dependent vaccine-induced immune response is not well understood. This study aimed to investigate the dynamics of SARS-CoV-2 antispike immunoglobulin G IgG response. Medical staff participants who received two sequential doses of the BNT162b2 vaccination on days 0 and 21 were recruited prospectively from the Musashino Red Cross Hospital between March and May 2021. The quantitative antispike receptor-binding domain RBD IgG antibody responses were measured using the Abbott SARS-CoV-2 IgGII Quant assay cut off ≥50 AU/ml. A total of 59 participants without past COVID-19 history were continuously tracked with serum samples. The median age was 41 22-75 years, and 14 participants were male The median antispike RBD IgG and seropositivity rates were 0 AU/ml, AU/ml, AU/ml, 18, AU/ml, and 0%, 0%, and 100% on days 0, 3, 14, and 28 after the first vaccination, respectively. The antispike RBD IgG levels were significantly increased after day 14 from vaccination p < The BNT162b2 vaccination led almost all participants to obtain serum antispike RBD IgG 14 days after the first dose. Keywords COVID-19; SARS-Cov-2; mRNA vaccine; quantitative antispike RBD IgG. © 2021 Wiley Periodicals LLC. Conflict of interest statement The authors declare that there are no conflict of interests. Figures Figure 1 Dynamics of SARS‐CoV‐2 antispike RBD IgG response after vaccination. A Schema of the schedule for vaccination and blood test. B Antispike RBD IgG titer AU/ml and seropositive rate of antispike RBD IgG and antinucleocapsid IgG in a time‐dependent manner. RBD, receptor‐binding domain Similar articles Evaluation of Humoral Immune Response after SARS-CoV-2 Vaccination Using Two Binding Antibody Assays and a Neutralizing Antibody Assay. Nam M, Seo JD, Moon HW, Kim H, Hur M, Yun YM. Nam M, et al. Microbiol Spectr. 2021 Dec 22;93e0120221. doi Epub 2021 Nov 24. Microbiol Spectr. 2021. PMID 34817223 Free PMC article. Healthcare Workers in South Korea Maintain a SARS-CoV-2 Antibody Response Six Months After Receiving a Second Dose of the BNT162b2 mRNA Vaccine. Choi JH, Kim YR, Heo ST, Oh H, Kim M, Lee HR, Yoo JR. Choi JH, et al. Front Immunol. 2022 Jan 31;13827306. doi eCollection 2022. Front Immunol. 2022. PMID 35173736 Free PMC article. Evaluation of Seropositivity Following BNT162b2 Messenger RNA Vaccination for SARS-CoV-2 in Patients Undergoing Treatment for Cancer. Massarweh A, Eliakim-Raz N, Stemmer A, Levy-Barda A, Yust-Katz S, Zer A, Benouaich-Amiel A, Ben-Zvi H, Moskovits N, Brenner B, Bishara J, Yahav D, Tadmor B, Zaks T, Stemmer SM. Massarweh A, et al. JAMA Oncol. 2021 Aug 1;781133-1140. doi JAMA Oncol. 2021. PMID 34047765 Free PMC article. Evaluation of the SARS-CoV-2 Antibody Response to the BNT162b2 Vaccine in Patients Undergoing Hemodialysis. Yau K, Abe KT, Naimark D, Oliver MJ, Perl J, Leis JA, Bolotin S, Tran V, Mullin SI, Shadowitz E, Gonzalez A, Sukovic T, Garnham-Takaoka J, de Launay KQ, Takaoka A, Straus SE, McGeer AJ, Chan CT, Colwill K, Gingras AC, Hladunewich MA. Yau K, et al. JAMA Netw Open. 2021 Sep 1;49e2123622. doi JAMA Netw Open. 2021. PMID 34473256 Free PMC article. Review of SARS-CoV-2 Antigen and Antibody Testing in Diagnosis and Community Surveillance. Nerenz RD, Hubbard JA, Cervinski MA. Nerenz RD, et al. Clin Lab Med. 2022 Dec;424687-704. doi Clin Lab Med. 2022. PMID 36368790 Free PMC article. Review. No abstract available. Cited by Higher Immunological Response after BNT162b2 Vaccination among COVID-19 Convalescents-The Data from the Study among Healthcare Workers in an Infectious Diseases Center. Skrzat-Klapaczyńska A, Kowalska JD, Paciorek M, Puła J, Bieńkowski C, Krogulec D, Stengiel J, Pawełczyk A, Perlejewski K, Osuch S, Radkowski M, Horban A. Skrzat-Klapaczyńska A, et al. Vaccines Basel. 2022 Dec 15;10122158. doi Vaccines Basel. 2022. PMID 36560567 Free PMC article. Measurements of Anti-SARS-CoV-2 Antibody Levels after Vaccination Using a SH-SAW Biosensor. Cheng CH, Peng YC, Lin SM, Yatsuda H, Liu SH, Liu SJ, Kuo CY, Wang RYL. Cheng CH, et al. Biosensors Basel. 2022 Aug 4;128599. doi Biosensors Basel. 2022. PMID 36004995 Free PMC article. Relationship between changes in symptoms and antibody titers after a single vaccination in patients with Long COVID. Tsuchida T, Hirose M, Inoue Y, Kunishima H, Otsubo T, Matsuda T. Tsuchida T, et al. J Med Virol. 2022 Jul;9473416-3420. doi Epub 2022 Mar 8. J Med Virol. 2022. PMID 35238053 Free PMC article. The Comparability of Anti-Spike SARS-CoV-2 Antibody Tests is Time-Dependent a Prospective Observational Study. Perkmann T, Mucher P, Perkmann-Nagele N, Radakovics A, Repl M, Koller T, Schmetterer KG, Bigenzahn JW, Leitner F, Jordakieva G, Wagner OF, Binder CJ, Haslacher H. Perkmann T, et al. Microbiol Spectr. 2022 Feb 23;101e0140221. doi Epub 2022 Feb 23. Microbiol Spectr. 2022. PMID 35196824 Free PMC article. References Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382181708‐1720. - PMC - PubMed Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID‐19 in Wuhan, China a retrospective cohort study. Lancet. 2020;395102291054‐1062. - PMC - PubMed Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID‐19 cases a systematic literature review and meta‐analysis. J Infect. 2020;8116. - PMC - PubMed Hu Y, Sun J, Dai Z, et al. Prevalence and severity of corona virus disease 2019 COVID‐19 a systematic review and meta‐analysis. J Clin Virol. 2020;127104371. - PMC - PubMed World Health Organization . Coronavirus disease COVID‐19. Situation report. Accessed, May 17th, MeSH terms Substances LinkOut - more resources Full Text Sources Europe PubMed Central Ovid Technologies, Inc. PubMed Central Wiley Medical Genetic Alliance MedlinePlus Health Information Miscellaneous NCI CPTAC Assay Portal